MATLAB: Introduction

Part 2

Bruno Abreu Calfa

Last Update: August 9, 2011

Table of Contents

Outline

Contents

1 MATLAB Classes
2 Elements of Programming
3 Plotting
 3.1 2-D Plotting
 3.2 3-D Plotting

1 MATLAB Classes

ND Arrays

- MATLAB allows multidimensional arrays (n dimensions)
 - `>> nd1 = zeros(2, 3, 4)` % 2-by-3-by-4 full of 0s
 - `>> nd2 = ones(10, 5, 8, 7)` % 10-by-5-by-8-by-7 full of 1s
 - `>> nd1(:,1,2) = 1:2` % Replaces column 1 of page 2 by [1,2]
 - `>> nd2(:,:,5,7) = rand(10,5)` % Replaces rows and columns of page 5 and chapter 7 by random 10-by-5 matrix

Cell and Structure Arrays

- Cell Arrays (cell): generic containers (store any type of data)
 - `>> cell1 = {'aaa', 1, rand(2,3)}` % Use curly braces to retrieve/assign values
 - `>> a = cell1{1}` % 'a' is the first container (also a cell)
 - `>> b = cell1{1}` % 'b' is the first content (a char array)
 - `>> cell1{;} % {;}` generates a comma-separated list
 - `>> [a,b,c] = cell1{;}` % Assigns each content to a variable

- Structure Arrays (struct): data types with fields and values
 - `>> methane.omega = .012;` % Methane’s acentric factor
 - `>> methane.Tc = 190.6;` % Its critical temperature, K
 - `>> methane.Pc = 45.99;` % Its critical pressure, bar
 - `>> methane % Display methane fields and values`
2 Elements of Programming

Relational and Logical Operators

• Relational Operators:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>>, <</td>
<td>greater than, smaller than</td>
</tr>
<tr>
<td>>=, <=</td>
<td>greater or equal than, smaller or equal than</td>
</tr>
<tr>
<td>==, ~</td>
<td>equal to, not equal to</td>
</tr>
</tbody>
</table>

• Logical Operators:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&&, &</td>
<td>short-circuiting AND, element-wise AND</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>~</td>
<td>element-wise NOT</td>
</tr>
</tbody>
</table>

if-elseif-else Statements: Flow Control

• General form:

```
if expression1
  statements1
elseif expression2
  statements2
else
  statements3
end
```

• Example:

```
r = rand;
if (r < .3)
  r=r*2;
elseif (r >= .3 && ...
  r < .6)
  r = r*3;
else
  r = r*4;
end
```

switch-case Statements: Flow Control

• General form:

```
switch switch_expr
  case case_expr
    statement, ..., statement
  case {case_expr1, case_expr2, case_expr3, ...}
    statement, ..., statement
  otherwise
    statement, ..., statement
end
```

• Example:
method = 'Bilinear';
switch lower(method)
 case {'linear', 'bilinear'}
 disp('Method is linear')
 disp('Unknown method')
end

for Loop Statements

- General form:

  ```
  for var = init:step:end
    statement
    statement
    ...
  end
  ```

- Example:

  ```
  a = zeros(10);
  for i = 1:10
    for j = 1:10
      a(i,j) = 1/(i+j-1);
    end
  end
  ```

while Loop Statements

- General form:

  ```
  while expression
    statement
    statement
    ...
  end
  ```

- Example:

  ```
  x0 = .5;
  x = x0 - tan(x0);
  while (sqrt(x^2 - x0^2) > 1E-3)
    x0 = x;
    x = x0 - tan(x0);
  end
  printf('x_end = %g', x)
  ```
try–catch Statements: Error Handling

- General form:

```
try
    statement...
catch ME % Optional statement...
end
```

- Example:

```
try
    fid = fopen('a.txt', 'r');
    d_in = fread(fid);
catch EX
    disp('Exception caught!')
    EX
end
```

3 Plotting

3.1 2-D Plotting

2-D Plotting

- The plotting commands in MATLAB work in a similar way: `command(data1,data2,...,[‘Prop1Name’,Prop1Value,...])`

 where `data1, data2,...` are arrays of data to be graphed and `‘Prop1Name’, Prop1Value,...` are the plotting properties’ names and respective values (optional)

- See MATLAB’s Help for a description of all lineseries properties

- Some plotting commands: `plot, loglog, semilogx, semilogy`

- Basic example: plot $\sin(x)$ between $[0, 2\pi]$

```
x = linspace(0,2*pi);
y = sin(x);
figure
plot(x,y);
```
• Adding more information to the plot of $\sin(x)$ between $[0, 2\pi]$

```matlab
x = linspace(0,2*pi);
y = sin(x);
figure
plot(x,y,'Color','red');
title('Plot of sin(x)');
xlabel('x');
ylabel('y');
```

![Plot of sin(x)](image)

• Plotting multiple data on the same figure

```matlab
x = linspace(-10,10,1000);
y = 2*x;
z = 4*x.^2 - 2;
w = 8*x.^3 - 12*x;
figure
plot(x,y,x,z,x,w);
title('Plot of three polynomials');
xlabel('x');
ylabel('H(x)');
ylim([-10 10]);
legend('H_2(x)','H_3(x)','H_4(x)');
```

![Plot of three polynomials](image)

• Plotting multiple data on the same figure with `hold on` and `hold off`

```matlab
x = linspace(-1,1,1000);
y = (3*x.^2 - 1)/2;
z = (5*x.^3 - 3*x)/2;
figure
plot(x,y,'Color',rand(1,3));
hold on;
plot(x,z,'Color',rand(1,3));
hold off;
```

![Plot with hold on and hold off](image)
• Adding multiple plots on the same figure: subplot

```matlab
x = linspace(-5,5,1000);'
y = [x.^2, sin(x), cosh(x), exp(x), exp(-x).*sin(x), x];
colors = lines(6);
figure('Name','3-by-2 Plots','Color','white');
for i = 1:6
    subplot(3,2,i);
    plot(x,y(:,i),'Color',colors(i,:));
end
```

3.2 3-D Plotting

3-D Plotting

• In three dimensions, you can plot lines (plot3) and surfaces (surf, surfc, mesh, meshc)
• See MATLAB’s Help for a description of all surface properties
• Set the current color map with the command colormap
• Basic example: plot $z = x^2 + y^2$

```matlab
x = linspace(-10,10,1000);
y = x;
[X,Y] = meshgrid(x,y);
Z = X.^2 + Y.^2;
figure
surf(X,Y,Z,'EdgeColor','none');
xlabel('x');
ylabel('y');
zlabel('z');
```
• Adding contours to \(z = x^2 - y^2 \)

```matlab
x = linspace(-5,5,50);
y = x;
[X,Y] = meshgrid(x,y);
Z = X.^2 - Y.^2;
figure
colormap('cool');
meshc(X,Y,Z);
xlabel('x');
ylabel('y');
zlabel('z');
```