
MATLAB: Introduction

Front Matter

MATLAB: Introduction
Part 1

Bruno Abreu Calfa

Last Update: August 9, 2011



MATLAB: Introduction

Table of Contents

Outline

What is MATLAB?

MATLAB Windows

MATLAB as a Calculator

MATLAB Classes

Scripts and Functions
Writing MATLAB Programs
Code Cells and Publishing



MATLAB: Introduction

What is MATLAB?

Outline

What is MATLAB?

MATLAB Windows

MATLAB as a Calculator

MATLAB Classes

Scripts and Functions
Writing MATLAB Programs
Code Cells and Publishing



MATLAB: Introduction

What is MATLAB?

A powerful tool!

I MATLAB stands for Matrix Laboratory
I Enhanced by toolboxes (specific routines for an area of

application)
I Optimization
I Statistics
I Control System
I Bioinformatics
I . . .

I Excellent for numerical computations
I Commonly regarded as a ‘Rapid Prototyping Tool’
I Used in industry and academia



MATLAB: Introduction

What is MATLAB?

Help with MATLAB?

I MATLAB’s Help
I Google
I A book about MATLAB



MATLAB: Introduction

MATLAB Windows

Outline

What is MATLAB?

MATLAB Windows

MATLAB as a Calculator

MATLAB Classes

Scripts and Functions
Writing MATLAB Programs
Code Cells and Publishing



MATLAB: Introduction

MATLAB Windows

Main Window I

I Command Window (prompt >>)
I Current Directory
I Workspace (contains variables stored in memory)
I Help Menu



MATLAB: Introduction

MATLAB Windows

Main Window II



MATLAB: Introduction

MATLAB Windows

Editor Window I

I Window Menu (Tile)
I Debug Menu (Run, Step, Step In, Step Out...)
I Cell Menu (Cell Mode)



MATLAB: Introduction

MATLAB Windows

Editor Window II



MATLAB: Introduction

MATLAB as a Calculator

Outline

What is MATLAB?

MATLAB Windows

MATLAB as a Calculator

MATLAB Classes

Scripts and Functions
Writing MATLAB Programs
Code Cells and Publishing



MATLAB: Introduction

MATLAB as a Calculator

Basic Operators

I MATLAB supports the following mathematical operators

Operator Operation
+ Addition
- Subtraction
* Multiplication
/ Division
ˆ Exponentiation

I Some examples:
I >> 1 + 2

I >> 2*3 + 4
I >> 4/3 - 3/4 + 2ˆ3



MATLAB: Introduction

MATLAB as a Calculator

Basic Operators

I MATLAB supports the following mathematical operators

Operator Operation
+ Addition
- Subtraction
* Multiplication
/ Division
ˆ Exponentiation

I Some examples:
I >> 1 + 2
I >> 2*3 + 4

I >> 4/3 - 3/4 + 2ˆ3



MATLAB: Introduction

MATLAB as a Calculator

Basic Operators

I MATLAB supports the following mathematical operators

Operator Operation
+ Addition
- Subtraction
* Multiplication
/ Division
ˆ Exponentiation

I Some examples:
I >> 1 + 2
I >> 2*3 + 4
I >> 4/3 - 3/4 + 2ˆ3



MATLAB: Introduction

MATLAB as a Calculator

Basic Operators

I Beware of operator precedence rules!
I >> 2*3 + 4

I >> 2*(3 + 4)
I >> 4.2/3 + 1.2
I >> 4.2/(3 + 1.2)
I >> 15/(2 + 3)*(4 - 1)
I >> 15/((2 + 3)*(4 - 1))
I >> 2ˆ3/2
I >> 2ˆ(3/2)

I Use parentheses to enforce the desired order



MATLAB: Introduction

MATLAB as a Calculator

Basic Operators

I Beware of operator precedence rules!
I >> 2*3 + 4
I >> 2*(3 + 4)

I >> 4.2/3 + 1.2
I >> 4.2/(3 + 1.2)
I >> 15/(2 + 3)*(4 - 1)
I >> 15/((2 + 3)*(4 - 1))
I >> 2ˆ3/2
I >> 2ˆ(3/2)

I Use parentheses to enforce the desired order



MATLAB: Introduction

MATLAB as a Calculator

Basic Operators

I Beware of operator precedence rules!
I >> 2*3 + 4
I >> 2*(3 + 4)
I >> 4.2/3 + 1.2

I >> 4.2/(3 + 1.2)
I >> 15/(2 + 3)*(4 - 1)
I >> 15/((2 + 3)*(4 - 1))
I >> 2ˆ3/2
I >> 2ˆ(3/2)

I Use parentheses to enforce the desired order



MATLAB: Introduction

MATLAB as a Calculator

Basic Operators

I Beware of operator precedence rules!
I >> 2*3 + 4
I >> 2*(3 + 4)
I >> 4.2/3 + 1.2
I >> 4.2/(3 + 1.2)

I >> 15/(2 + 3)*(4 - 1)
I >> 15/((2 + 3)*(4 - 1))
I >> 2ˆ3/2
I >> 2ˆ(3/2)

I Use parentheses to enforce the desired order



MATLAB: Introduction

MATLAB as a Calculator

Basic Operators

I Beware of operator precedence rules!
I >> 2*3 + 4
I >> 2*(3 + 4)
I >> 4.2/3 + 1.2
I >> 4.2/(3 + 1.2)
I >> 15/(2 + 3)*(4 - 1)

I >> 15/((2 + 3)*(4 - 1))
I >> 2ˆ3/2
I >> 2ˆ(3/2)

I Use parentheses to enforce the desired order



MATLAB: Introduction

MATLAB as a Calculator

Basic Operators

I Beware of operator precedence rules!
I >> 2*3 + 4
I >> 2*(3 + 4)
I >> 4.2/3 + 1.2
I >> 4.2/(3 + 1.2)
I >> 15/(2 + 3)*(4 - 1)
I >> 15/((2 + 3)*(4 - 1))

I >> 2ˆ3/2
I >> 2ˆ(3/2)

I Use parentheses to enforce the desired order



MATLAB: Introduction

MATLAB as a Calculator

Basic Operators

I Beware of operator precedence rules!
I >> 2*3 + 4
I >> 2*(3 + 4)
I >> 4.2/3 + 1.2
I >> 4.2/(3 + 1.2)
I >> 15/(2 + 3)*(4 - 1)
I >> 15/((2 + 3)*(4 - 1))
I >> 2ˆ3/2

I >> 2ˆ(3/2)

I Use parentheses to enforce the desired order



MATLAB: Introduction

MATLAB as a Calculator

Basic Operators

I Beware of operator precedence rules!
I >> 2*3 + 4
I >> 2*(3 + 4)
I >> 4.2/3 + 1.2
I >> 4.2/(3 + 1.2)
I >> 15/(2 + 3)*(4 - 1)
I >> 15/((2 + 3)*(4 - 1))
I >> 2ˆ3/2
I >> 2ˆ(3/2)

I Use parentheses to enforce the desired order



MATLAB: Introduction

MATLAB Classes

Outline

What is MATLAB?

MATLAB Windows

MATLAB as a Calculator

MATLAB Classes

Scripts and Functions
Writing MATLAB Programs
Code Cells and Publishing



MATLAB: Introduction

MATLAB Classes

All Matrices!

I “Everything” in MATLAB is a matrix
I A scalar is a 1-by-1 matrix
I A 1D array of n elements can be a n-by-1 (row vector) or

a 1-by-n (column vector) matrix
I A string of n characters is a 1-by-n matrix
I . . .

I Some MATLAB classes:
I double (Double-precision floating-point number array)

(default)
I single (Single-precision floating-point number array)
I char (Character array)
I cell (Cell array)
I struct (Structure array)
I function_handle (Array of values for calling functions

indirectly)



MATLAB: Introduction

MATLAB Classes

Scalar Variables: 1-by-1 Matrices!

I Use the ‘=’ sign for assignment
I >> a = 1 % The scalar variable ‘a’ stores the value 1

I >> % This is a comment and is ignored by the interpreter
I >> sin(a) % Sine of ‘a’ = 0.8415
I >> sin(a); % ‘;’ avoids displaying the result of the

command
I >> size(a) % = [1,1], i.e. 1-by-1 matrix
I >> b = a + 2 % b = 3
I >> c = cos(b*pi/.2) % ‘pi’ is the builtin constant π
I >> d = rand % A random scalar

I Use the commands who or whos to list the variables
defined in the Workspace

I Other common functions are available:
exp, tan, sinh, acos, . . .



MATLAB: Introduction

MATLAB Classes

Scalar Variables: 1-by-1 Matrices!

I Use the ‘=’ sign for assignment
I >> a = 1 % The scalar variable ‘a’ stores the value 1
I >> % This is a comment and is ignored by the interpreter

I >> sin(a) % Sine of ‘a’ = 0.8415
I >> sin(a); % ‘;’ avoids displaying the result of the

command
I >> size(a) % = [1,1], i.e. 1-by-1 matrix
I >> b = a + 2 % b = 3
I >> c = cos(b*pi/.2) % ‘pi’ is the builtin constant π
I >> d = rand % A random scalar

I Use the commands who or whos to list the variables
defined in the Workspace

I Other common functions are available:
exp, tan, sinh, acos, . . .



MATLAB: Introduction

MATLAB Classes

Scalar Variables: 1-by-1 Matrices!

I Use the ‘=’ sign for assignment
I >> a = 1 % The scalar variable ‘a’ stores the value 1
I >> % This is a comment and is ignored by the interpreter
I >> sin(a) % Sine of ‘a’ = 0.8415

I >> sin(a); % ‘;’ avoids displaying the result of the
command

I >> size(a) % = [1,1], i.e. 1-by-1 matrix
I >> b = a + 2 % b = 3
I >> c = cos(b*pi/.2) % ‘pi’ is the builtin constant π
I >> d = rand % A random scalar

I Use the commands who or whos to list the variables
defined in the Workspace

I Other common functions are available:
exp, tan, sinh, acos, . . .



MATLAB: Introduction

MATLAB Classes

Scalar Variables: 1-by-1 Matrices!

I Use the ‘=’ sign for assignment
I >> a = 1 % The scalar variable ‘a’ stores the value 1
I >> % This is a comment and is ignored by the interpreter
I >> sin(a) % Sine of ‘a’ = 0.8415
I >> sin(a); % ‘;’ avoids displaying the result of the

command

I >> size(a) % = [1,1], i.e. 1-by-1 matrix
I >> b = a + 2 % b = 3
I >> c = cos(b*pi/.2) % ‘pi’ is the builtin constant π
I >> d = rand % A random scalar

I Use the commands who or whos to list the variables
defined in the Workspace

I Other common functions are available:
exp, tan, sinh, acos, . . .



MATLAB: Introduction

MATLAB Classes

Scalar Variables: 1-by-1 Matrices!

I Use the ‘=’ sign for assignment
I >> a = 1 % The scalar variable ‘a’ stores the value 1
I >> % This is a comment and is ignored by the interpreter
I >> sin(a) % Sine of ‘a’ = 0.8415
I >> sin(a); % ‘;’ avoids displaying the result of the

command
I >> size(a) % = [1,1], i.e. 1-by-1 matrix

I >> b = a + 2 % b = 3
I >> c = cos(b*pi/.2) % ‘pi’ is the builtin constant π
I >> d = rand % A random scalar

I Use the commands who or whos to list the variables
defined in the Workspace

I Other common functions are available:
exp, tan, sinh, acos, . . .



MATLAB: Introduction

MATLAB Classes

Scalar Variables: 1-by-1 Matrices!

I Use the ‘=’ sign for assignment
I >> a = 1 % The scalar variable ‘a’ stores the value 1
I >> % This is a comment and is ignored by the interpreter
I >> sin(a) % Sine of ‘a’ = 0.8415
I >> sin(a); % ‘;’ avoids displaying the result of the

command
I >> size(a) % = [1,1], i.e. 1-by-1 matrix
I >> b = a + 2 % b = 3

I >> c = cos(b*pi/.2) % ‘pi’ is the builtin constant π
I >> d = rand % A random scalar

I Use the commands who or whos to list the variables
defined in the Workspace

I Other common functions are available:
exp, tan, sinh, acos, . . .



MATLAB: Introduction

MATLAB Classes

Scalar Variables: 1-by-1 Matrices!

I Use the ‘=’ sign for assignment
I >> a = 1 % The scalar variable ‘a’ stores the value 1
I >> % This is a comment and is ignored by the interpreter
I >> sin(a) % Sine of ‘a’ = 0.8415
I >> sin(a); % ‘;’ avoids displaying the result of the

command
I >> size(a) % = [1,1], i.e. 1-by-1 matrix
I >> b = a + 2 % b = 3
I >> c = cos(b*pi/.2) % ‘pi’ is the builtin constant π

I >> d = rand % A random scalar
I Use the commands who or whos to list the variables

defined in the Workspace
I Other common functions are available:
exp, tan, sinh, acos, . . .



MATLAB: Introduction

MATLAB Classes

Scalar Variables: 1-by-1 Matrices!

I Use the ‘=’ sign for assignment
I >> a = 1 % The scalar variable ‘a’ stores the value 1
I >> % This is a comment and is ignored by the interpreter
I >> sin(a) % Sine of ‘a’ = 0.8415
I >> sin(a); % ‘;’ avoids displaying the result of the

command
I >> size(a) % = [1,1], i.e. 1-by-1 matrix
I >> b = a + 2 % b = 3
I >> c = cos(b*pi/.2) % ‘pi’ is the builtin constant π
I >> d = rand % A random scalar

I Use the commands who or whos to list the variables
defined in the Workspace

I Other common functions are available:
exp, tan, sinh, acos, . . .



MATLAB: Introduction

MATLAB Classes

Scalar Variables: 1-by-1 Matrices!

I Use the ‘=’ sign for assignment
I >> a = 1 % The scalar variable ‘a’ stores the value 1
I >> % This is a comment and is ignored by the interpreter
I >> sin(a) % Sine of ‘a’ = 0.8415
I >> sin(a); % ‘;’ avoids displaying the result of the

command
I >> size(a) % = [1,1], i.e. 1-by-1 matrix
I >> b = a + 2 % b = 3
I >> c = cos(b*pi/.2) % ‘pi’ is the builtin constant π
I >> d = rand % A random scalar

I Use the commands who or whos to list the variables
defined in the Workspace

I Other common functions are available:
exp, tan, sinh, acos, . . .



MATLAB: Introduction

MATLAB Classes

Scalar Variables: 1-by-1 Matrices!

I Use the ‘=’ sign for assignment
I >> a = 1 % The scalar variable ‘a’ stores the value 1
I >> % This is a comment and is ignored by the interpreter
I >> sin(a) % Sine of ‘a’ = 0.8415
I >> sin(a); % ‘;’ avoids displaying the result of the

command
I >> size(a) % = [1,1], i.e. 1-by-1 matrix
I >> b = a + 2 % b = 3
I >> c = cos(b*pi/.2) % ‘pi’ is the builtin constant π
I >> d = rand % A random scalar

I Use the commands who or whos to list the variables
defined in the Workspace

I Other common functions are available:
exp, tan, sinh, acos, . . .



MATLAB: Introduction

MATLAB Classes

1D Arrays: Real Vectors (or Matrices!)

I Use [...,...] or [... ...] for horizontal stacking and
[...;...] for vertical stacking

I >> v1 = [1 2 3] % Row vector, same as v1 =
[1,2,3]

I >> v2 = [4;5;6] % Column vector
I >> v3 = v2 - v1 % Error! Imcompatible matrix

dimensions
I >> v3 = v2 - v1.’ % Transpose a real matrix with .’
I >> v4 = v1*v2 % Dot product, also dot(v1,v2)
I >> v7 = .1*v4 % Scalar-vector multiplication
I >> v7(1) % First element of array ‘v7’
I >> v8 = exp(v7) % Element-wise operation
I >> sz8 = size(v8) % = [1 3]
I >> v9 = rand(1,5) % Random 1-by-5 array
I >> p = prod(v1) % Product of elements = 6



MATLAB: Introduction

MATLAB Classes

1D Arrays: Real Vectors (or Matrices!)

I Use [...,...] or [... ...] for horizontal stacking and
[...;...] for vertical stacking

I >> v1 = [1 2 3] % Row vector, same as v1 =
[1,2,3]

I >> v2 = [4;5;6] % Column vector

I >> v3 = v2 - v1 % Error! Imcompatible matrix
dimensions

I >> v3 = v2 - v1.’ % Transpose a real matrix with .’
I >> v4 = v1*v2 % Dot product, also dot(v1,v2)
I >> v7 = .1*v4 % Scalar-vector multiplication
I >> v7(1) % First element of array ‘v7’
I >> v8 = exp(v7) % Element-wise operation
I >> sz8 = size(v8) % = [1 3]
I >> v9 = rand(1,5) % Random 1-by-5 array
I >> p = prod(v1) % Product of elements = 6



MATLAB: Introduction

MATLAB Classes

1D Arrays: Real Vectors (or Matrices!)

I Use [...,...] or [... ...] for horizontal stacking and
[...;...] for vertical stacking

I >> v1 = [1 2 3] % Row vector, same as v1 =
[1,2,3]

I >> v2 = [4;5;6] % Column vector
I >> v3 = v2 - v1 % Error! Imcompatible matrix

dimensions

I >> v3 = v2 - v1.’ % Transpose a real matrix with .’
I >> v4 = v1*v2 % Dot product, also dot(v1,v2)
I >> v7 = .1*v4 % Scalar-vector multiplication
I >> v7(1) % First element of array ‘v7’
I >> v8 = exp(v7) % Element-wise operation
I >> sz8 = size(v8) % = [1 3]
I >> v9 = rand(1,5) % Random 1-by-5 array
I >> p = prod(v1) % Product of elements = 6



MATLAB: Introduction

MATLAB Classes

1D Arrays: Real Vectors (or Matrices!)

I Use [...,...] or [... ...] for horizontal stacking and
[...;...] for vertical stacking

I >> v1 = [1 2 3] % Row vector, same as v1 =
[1,2,3]

I >> v2 = [4;5;6] % Column vector
I >> v3 = v2 - v1 % Error! Imcompatible matrix

dimensions
I >> v3 = v2 - v1.’ % Transpose a real matrix with .’

I >> v4 = v1*v2 % Dot product, also dot(v1,v2)
I >> v7 = .1*v4 % Scalar-vector multiplication
I >> v7(1) % First element of array ‘v7’
I >> v8 = exp(v7) % Element-wise operation
I >> sz8 = size(v8) % = [1 3]
I >> v9 = rand(1,5) % Random 1-by-5 array
I >> p = prod(v1) % Product of elements = 6



MATLAB: Introduction

MATLAB Classes

1D Arrays: Real Vectors (or Matrices!)

I Use [...,...] or [... ...] for horizontal stacking and
[...;...] for vertical stacking

I >> v1 = [1 2 3] % Row vector, same as v1 =
[1,2,3]

I >> v2 = [4;5;6] % Column vector
I >> v3 = v2 - v1 % Error! Imcompatible matrix

dimensions
I >> v3 = v2 - v1.’ % Transpose a real matrix with .’
I >> v4 = v1*v2 % Dot product, also dot(v1,v2)

I >> v7 = .1*v4 % Scalar-vector multiplication
I >> v7(1) % First element of array ‘v7’
I >> v8 = exp(v7) % Element-wise operation
I >> sz8 = size(v8) % = [1 3]
I >> v9 = rand(1,5) % Random 1-by-5 array
I >> p = prod(v1) % Product of elements = 6



MATLAB: Introduction

MATLAB Classes

1D Arrays: Real Vectors (or Matrices!)

I Use [...,...] or [... ...] for horizontal stacking and
[...;...] for vertical stacking

I >> v1 = [1 2 3] % Row vector, same as v1 =
[1,2,3]

I >> v2 = [4;5;6] % Column vector
I >> v3 = v2 - v1 % Error! Imcompatible matrix

dimensions
I >> v3 = v2 - v1.’ % Transpose a real matrix with .’
I >> v4 = v1*v2 % Dot product, also dot(v1,v2)
I >> v7 = .1*v4 % Scalar-vector multiplication

I >> v7(1) % First element of array ‘v7’
I >> v8 = exp(v7) % Element-wise operation
I >> sz8 = size(v8) % = [1 3]
I >> v9 = rand(1,5) % Random 1-by-5 array
I >> p = prod(v1) % Product of elements = 6



MATLAB: Introduction

MATLAB Classes

1D Arrays: Real Vectors (or Matrices!)

I Use [...,...] or [... ...] for horizontal stacking and
[...;...] for vertical stacking

I >> v1 = [1 2 3] % Row vector, same as v1 =
[1,2,3]

I >> v2 = [4;5;6] % Column vector
I >> v3 = v2 - v1 % Error! Imcompatible matrix

dimensions
I >> v3 = v2 - v1.’ % Transpose a real matrix with .’
I >> v4 = v1*v2 % Dot product, also dot(v1,v2)
I >> v7 = .1*v4 % Scalar-vector multiplication
I >> v7(1) % First element of array ‘v7’

I >> v8 = exp(v7) % Element-wise operation
I >> sz8 = size(v8) % = [1 3]
I >> v9 = rand(1,5) % Random 1-by-5 array
I >> p = prod(v1) % Product of elements = 6



MATLAB: Introduction

MATLAB Classes

1D Arrays: Real Vectors (or Matrices!)

I Use [...,...] or [... ...] for horizontal stacking and
[...;...] for vertical stacking

I >> v1 = [1 2 3] % Row vector, same as v1 =
[1,2,3]

I >> v2 = [4;5;6] % Column vector
I >> v3 = v2 - v1 % Error! Imcompatible matrix

dimensions
I >> v3 = v2 - v1.’ % Transpose a real matrix with .’
I >> v4 = v1*v2 % Dot product, also dot(v1,v2)
I >> v7 = .1*v4 % Scalar-vector multiplication
I >> v7(1) % First element of array ‘v7’
I >> v8 = exp(v7) % Element-wise operation

I >> sz8 = size(v8) % = [1 3]
I >> v9 = rand(1,5) % Random 1-by-5 array
I >> p = prod(v1) % Product of elements = 6



MATLAB: Introduction

MATLAB Classes

1D Arrays: Real Vectors (or Matrices!)

I Use [...,...] or [... ...] for horizontal stacking and
[...;...] for vertical stacking

I >> v1 = [1 2 3] % Row vector, same as v1 =
[1,2,3]

I >> v2 = [4;5;6] % Column vector
I >> v3 = v2 - v1 % Error! Imcompatible matrix

dimensions
I >> v3 = v2 - v1.’ % Transpose a real matrix with .’
I >> v4 = v1*v2 % Dot product, also dot(v1,v2)
I >> v7 = .1*v4 % Scalar-vector multiplication
I >> v7(1) % First element of array ‘v7’
I >> v8 = exp(v7) % Element-wise operation
I >> sz8 = size(v8) % = [1 3]

I >> v9 = rand(1,5) % Random 1-by-5 array
I >> p = prod(v1) % Product of elements = 6



MATLAB: Introduction

MATLAB Classes

1D Arrays: Real Vectors (or Matrices!)

I Use [...,...] or [... ...] for horizontal stacking and
[...;...] for vertical stacking

I >> v1 = [1 2 3] % Row vector, same as v1 =
[1,2,3]

I >> v2 = [4;5;6] % Column vector
I >> v3 = v2 - v1 % Error! Imcompatible matrix

dimensions
I >> v3 = v2 - v1.’ % Transpose a real matrix with .’
I >> v4 = v1*v2 % Dot product, also dot(v1,v2)
I >> v7 = .1*v4 % Scalar-vector multiplication
I >> v7(1) % First element of array ‘v7’
I >> v8 = exp(v7) % Element-wise operation
I >> sz8 = size(v8) % = [1 3]
I >> v9 = rand(1,5) % Random 1-by-5 array

I >> p = prod(v1) % Product of elements = 6



MATLAB: Introduction

MATLAB Classes

1D Arrays: Real Vectors (or Matrices!)

I Use [...,...] or [... ...] for horizontal stacking and
[...;...] for vertical stacking

I >> v1 = [1 2 3] % Row vector, same as v1 =
[1,2,3]

I >> v2 = [4;5;6] % Column vector
I >> v3 = v2 - v1 % Error! Imcompatible matrix

dimensions
I >> v3 = v2 - v1.’ % Transpose a real matrix with .’
I >> v4 = v1*v2 % Dot product, also dot(v1,v2)
I >> v7 = .1*v4 % Scalar-vector multiplication
I >> v7(1) % First element of array ‘v7’
I >> v8 = exp(v7) % Element-wise operation
I >> sz8 = size(v8) % = [1 3]
I >> v9 = rand(1,5) % Random 1-by-5 array
I >> p = prod(v1) % Product of elements = 6



MATLAB: Introduction

MATLAB Classes

2D Arrays: Real Matrices

I Use horizontal stacking and vertical stacking likewise
I >> m1 = [1 2 3; 4 5 6] % 2-by-3

I >> m1p = [1,2,3; 4,5,6] % 2-by-3, same as m1
I >> m2 = rand(2,3) % Random 2-by-3 matrix
I >> m3 = m1 + m2 % Matrix addition
I >> m4 = m1*m2 % Error! Dimensions don’t agree
I >> m4 = m1*m2.’ % OK! Transpose a real matrix with .’
I >> m4(1,2) % Element in row 1 and column 2 of ‘m4’
I >> len4 = length(m4) % Size of longest dimension
I >> m5 = m3/2 % Element-wise division
I >> m6 = tan(m5) % Element-wise operation



MATLAB: Introduction

MATLAB Classes

2D Arrays: Real Matrices

I Use horizontal stacking and vertical stacking likewise
I >> m1 = [1 2 3; 4 5 6] % 2-by-3
I >> m1p = [1,2,3; 4,5,6] % 2-by-3, same as m1

I >> m2 = rand(2,3) % Random 2-by-3 matrix
I >> m3 = m1 + m2 % Matrix addition
I >> m4 = m1*m2 % Error! Dimensions don’t agree
I >> m4 = m1*m2.’ % OK! Transpose a real matrix with .’
I >> m4(1,2) % Element in row 1 and column 2 of ‘m4’
I >> len4 = length(m4) % Size of longest dimension
I >> m5 = m3/2 % Element-wise division
I >> m6 = tan(m5) % Element-wise operation



MATLAB: Introduction

MATLAB Classes

2D Arrays: Real Matrices

I Use horizontal stacking and vertical stacking likewise
I >> m1 = [1 2 3; 4 5 6] % 2-by-3
I >> m1p = [1,2,3; 4,5,6] % 2-by-3, same as m1
I >> m2 = rand(2,3) % Random 2-by-3 matrix

I >> m3 = m1 + m2 % Matrix addition
I >> m4 = m1*m2 % Error! Dimensions don’t agree
I >> m4 = m1*m2.’ % OK! Transpose a real matrix with .’
I >> m4(1,2) % Element in row 1 and column 2 of ‘m4’
I >> len4 = length(m4) % Size of longest dimension
I >> m5 = m3/2 % Element-wise division
I >> m6 = tan(m5) % Element-wise operation



MATLAB: Introduction

MATLAB Classes

2D Arrays: Real Matrices

I Use horizontal stacking and vertical stacking likewise
I >> m1 = [1 2 3; 4 5 6] % 2-by-3
I >> m1p = [1,2,3; 4,5,6] % 2-by-3, same as m1
I >> m2 = rand(2,3) % Random 2-by-3 matrix
I >> m3 = m1 + m2 % Matrix addition

I >> m4 = m1*m2 % Error! Dimensions don’t agree
I >> m4 = m1*m2.’ % OK! Transpose a real matrix with .’
I >> m4(1,2) % Element in row 1 and column 2 of ‘m4’
I >> len4 = length(m4) % Size of longest dimension
I >> m5 = m3/2 % Element-wise division
I >> m6 = tan(m5) % Element-wise operation



MATLAB: Introduction

MATLAB Classes

2D Arrays: Real Matrices

I Use horizontal stacking and vertical stacking likewise
I >> m1 = [1 2 3; 4 5 6] % 2-by-3
I >> m1p = [1,2,3; 4,5,6] % 2-by-3, same as m1
I >> m2 = rand(2,3) % Random 2-by-3 matrix
I >> m3 = m1 + m2 % Matrix addition
I >> m4 = m1*m2 % Error! Dimensions don’t agree

I >> m4 = m1*m2.’ % OK! Transpose a real matrix with .’
I >> m4(1,2) % Element in row 1 and column 2 of ‘m4’
I >> len4 = length(m4) % Size of longest dimension
I >> m5 = m3/2 % Element-wise division
I >> m6 = tan(m5) % Element-wise operation



MATLAB: Introduction

MATLAB Classes

2D Arrays: Real Matrices

I Use horizontal stacking and vertical stacking likewise
I >> m1 = [1 2 3; 4 5 6] % 2-by-3
I >> m1p = [1,2,3; 4,5,6] % 2-by-3, same as m1
I >> m2 = rand(2,3) % Random 2-by-3 matrix
I >> m3 = m1 + m2 % Matrix addition
I >> m4 = m1*m2 % Error! Dimensions don’t agree
I >> m4 = m1*m2.’ % OK! Transpose a real matrix with .’

I >> m4(1,2) % Element in row 1 and column 2 of ‘m4’
I >> len4 = length(m4) % Size of longest dimension
I >> m5 = m3/2 % Element-wise division
I >> m6 = tan(m5) % Element-wise operation



MATLAB: Introduction

MATLAB Classes

2D Arrays: Real Matrices

I Use horizontal stacking and vertical stacking likewise
I >> m1 = [1 2 3; 4 5 6] % 2-by-3
I >> m1p = [1,2,3; 4,5,6] % 2-by-3, same as m1
I >> m2 = rand(2,3) % Random 2-by-3 matrix
I >> m3 = m1 + m2 % Matrix addition
I >> m4 = m1*m2 % Error! Dimensions don’t agree
I >> m4 = m1*m2.’ % OK! Transpose a real matrix with .’
I >> m4(1,2) % Element in row 1 and column 2 of ‘m4’

I >> len4 = length(m4) % Size of longest dimension
I >> m5 = m3/2 % Element-wise division
I >> m6 = tan(m5) % Element-wise operation



MATLAB: Introduction

MATLAB Classes

2D Arrays: Real Matrices

I Use horizontal stacking and vertical stacking likewise
I >> m1 = [1 2 3; 4 5 6] % 2-by-3
I >> m1p = [1,2,3; 4,5,6] % 2-by-3, same as m1
I >> m2 = rand(2,3) % Random 2-by-3 matrix
I >> m3 = m1 + m2 % Matrix addition
I >> m4 = m1*m2 % Error! Dimensions don’t agree
I >> m4 = m1*m2.’ % OK! Transpose a real matrix with .’
I >> m4(1,2) % Element in row 1 and column 2 of ‘m4’
I >> len4 = length(m4) % Size of longest dimension

I >> m5 = m3/2 % Element-wise division
I >> m6 = tan(m5) % Element-wise operation



MATLAB: Introduction

MATLAB Classes

2D Arrays: Real Matrices

I Use horizontal stacking and vertical stacking likewise
I >> m1 = [1 2 3; 4 5 6] % 2-by-3
I >> m1p = [1,2,3; 4,5,6] % 2-by-3, same as m1
I >> m2 = rand(2,3) % Random 2-by-3 matrix
I >> m3 = m1 + m2 % Matrix addition
I >> m4 = m1*m2 % Error! Dimensions don’t agree
I >> m4 = m1*m2.’ % OK! Transpose a real matrix with .’
I >> m4(1,2) % Element in row 1 and column 2 of ‘m4’
I >> len4 = length(m4) % Size of longest dimension
I >> m5 = m3/2 % Element-wise division

I >> m6 = tan(m5) % Element-wise operation



MATLAB: Introduction

MATLAB Classes

2D Arrays: Real Matrices

I Use horizontal stacking and vertical stacking likewise
I >> m1 = [1 2 3; 4 5 6] % 2-by-3
I >> m1p = [1,2,3; 4,5,6] % 2-by-3, same as m1
I >> m2 = rand(2,3) % Random 2-by-3 matrix
I >> m3 = m1 + m2 % Matrix addition
I >> m4 = m1*m2 % Error! Dimensions don’t agree
I >> m4 = m1*m2.’ % OK! Transpose a real matrix with .’
I >> m4(1,2) % Element in row 1 and column 2 of ‘m4’
I >> len4 = length(m4) % Size of longest dimension
I >> m5 = m3/2 % Element-wise division
I >> m6 = tan(m5) % Element-wise operation



MATLAB: Introduction

MATLAB Classes

Element-wise Operations

I The following are element-wise mathematical operators

Operator Operation
.* Element-wise Multiplication
./ Element-wise Division
.ˆ Element-wise Exponentiation

I More examples:
I >> v1 = [1 2 3] % 1-by-3

I >> v2 = [2 4 6] % 1-by-3
I >> v3 = v1.*v2 % = [2 8 18]
I >> v4 = v2./v1 % = [2 2 2]
I >> v5 = v1.ˆv4 % = [1 4 9]
I >> m1 = [0 1; 1 0] % 2-by-2
I >> m2 = [3 5; 7 2] % 2-by-2
I >> m3 = m1.*m2 % = [0 5; 7 0]



MATLAB: Introduction

MATLAB Classes

Element-wise Operations

I The following are element-wise mathematical operators

Operator Operation
.* Element-wise Multiplication
./ Element-wise Division
.ˆ Element-wise Exponentiation

I More examples:
I >> v1 = [1 2 3] % 1-by-3
I >> v2 = [2 4 6] % 1-by-3

I >> v3 = v1.*v2 % = [2 8 18]
I >> v4 = v2./v1 % = [2 2 2]
I >> v5 = v1.ˆv4 % = [1 4 9]
I >> m1 = [0 1; 1 0] % 2-by-2
I >> m2 = [3 5; 7 2] % 2-by-2
I >> m3 = m1.*m2 % = [0 5; 7 0]



MATLAB: Introduction

MATLAB Classes

Element-wise Operations

I The following are element-wise mathematical operators

Operator Operation
.* Element-wise Multiplication
./ Element-wise Division
.ˆ Element-wise Exponentiation

I More examples:
I >> v1 = [1 2 3] % 1-by-3
I >> v2 = [2 4 6] % 1-by-3
I >> v3 = v1.*v2 % = [2 8 18]

I >> v4 = v2./v1 % = [2 2 2]
I >> v5 = v1.ˆv4 % = [1 4 9]
I >> m1 = [0 1; 1 0] % 2-by-2
I >> m2 = [3 5; 7 2] % 2-by-2
I >> m3 = m1.*m2 % = [0 5; 7 0]



MATLAB: Introduction

MATLAB Classes

Element-wise Operations

I The following are element-wise mathematical operators

Operator Operation
.* Element-wise Multiplication
./ Element-wise Division
.ˆ Element-wise Exponentiation

I More examples:
I >> v1 = [1 2 3] % 1-by-3
I >> v2 = [2 4 6] % 1-by-3
I >> v3 = v1.*v2 % = [2 8 18]
I >> v4 = v2./v1 % = [2 2 2]

I >> v5 = v1.ˆv4 % = [1 4 9]
I >> m1 = [0 1; 1 0] % 2-by-2
I >> m2 = [3 5; 7 2] % 2-by-2
I >> m3 = m1.*m2 % = [0 5; 7 0]



MATLAB: Introduction

MATLAB Classes

Element-wise Operations

I The following are element-wise mathematical operators

Operator Operation
.* Element-wise Multiplication
./ Element-wise Division
.ˆ Element-wise Exponentiation

I More examples:
I >> v1 = [1 2 3] % 1-by-3
I >> v2 = [2 4 6] % 1-by-3
I >> v3 = v1.*v2 % = [2 8 18]
I >> v4 = v2./v1 % = [2 2 2]
I >> v5 = v1.ˆv4 % = [1 4 9]

I >> m1 = [0 1; 1 0] % 2-by-2
I >> m2 = [3 5; 7 2] % 2-by-2
I >> m3 = m1.*m2 % = [0 5; 7 0]



MATLAB: Introduction

MATLAB Classes

Element-wise Operations

I The following are element-wise mathematical operators

Operator Operation
.* Element-wise Multiplication
./ Element-wise Division
.ˆ Element-wise Exponentiation

I More examples:
I >> v1 = [1 2 3] % 1-by-3
I >> v2 = [2 4 6] % 1-by-3
I >> v3 = v1.*v2 % = [2 8 18]
I >> v4 = v2./v1 % = [2 2 2]
I >> v5 = v1.ˆv4 % = [1 4 9]
I >> m1 = [0 1; 1 0] % 2-by-2

I >> m2 = [3 5; 7 2] % 2-by-2
I >> m3 = m1.*m2 % = [0 5; 7 0]



MATLAB: Introduction

MATLAB Classes

Element-wise Operations

I The following are element-wise mathematical operators

Operator Operation
.* Element-wise Multiplication
./ Element-wise Division
.ˆ Element-wise Exponentiation

I More examples:
I >> v1 = [1 2 3] % 1-by-3
I >> v2 = [2 4 6] % 1-by-3
I >> v3 = v1.*v2 % = [2 8 18]
I >> v4 = v2./v1 % = [2 2 2]
I >> v5 = v1.ˆv4 % = [1 4 9]
I >> m1 = [0 1; 1 0] % 2-by-2
I >> m2 = [3 5; 7 2] % 2-by-2

I >> m3 = m1.*m2 % = [0 5; 7 0]



MATLAB: Introduction

MATLAB Classes

Element-wise Operations

I The following are element-wise mathematical operators

Operator Operation
.* Element-wise Multiplication
./ Element-wise Division
.ˆ Element-wise Exponentiation

I More examples:
I >> v1 = [1 2 3] % 1-by-3
I >> v2 = [2 4 6] % 1-by-3
I >> v3 = v1.*v2 % = [2 8 18]
I >> v4 = v2./v1 % = [2 2 2]
I >> v5 = v1.ˆv4 % = [1 4 9]
I >> m1 = [0 1; 1 0] % 2-by-2
I >> m2 = [3 5; 7 2] % 2-by-2
I >> m3 = m1.*m2 % = [0 5; 7 0]



MATLAB: Introduction

MATLAB Classes

The Colon (:) Operator

I Use it extensively!
I >> v1 = 1:10 % Same as v1 = [1,2,3,...,10]

I >> v2 = 0:.1:1 % Same as v2 = [0,.1,.2,...,1]
I >> m1 = rand(5) % Random 5-by-5 matrix
I >> v3 = v1(5:end) % v3 = [5,6,7,8,9,10]
I >> v4 = m1(:,3) % ‘v4’ has the elements in column 3

of ‘m1’
I >> v5 = m1(1,:) % ‘v5’ has the elements in row 1 of

‘m1’
I Do not forget linspace to generate linearly spaced

vectors!
I >> v6 = linspace(0,1,10) % =
[0,0.1111,0.2222,...,1]

I >> v7 = linspace(0,10,5) % =
[0,2.5,5,7.5,10]

I >> v8 = linspace(0,1,100) % =
[0,0.0101,0.0202,...,1]



MATLAB: Introduction

MATLAB Classes

The Colon (:) Operator

I Use it extensively!
I >> v1 = 1:10 % Same as v1 = [1,2,3,...,10]
I >> v2 = 0:.1:1 % Same as v2 = [0,.1,.2,...,1]

I >> m1 = rand(5) % Random 5-by-5 matrix
I >> v3 = v1(5:end) % v3 = [5,6,7,8,9,10]
I >> v4 = m1(:,3) % ‘v4’ has the elements in column 3

of ‘m1’
I >> v5 = m1(1,:) % ‘v5’ has the elements in row 1 of

‘m1’
I Do not forget linspace to generate linearly spaced

vectors!
I >> v6 = linspace(0,1,10) % =
[0,0.1111,0.2222,...,1]

I >> v7 = linspace(0,10,5) % =
[0,2.5,5,7.5,10]

I >> v8 = linspace(0,1,100) % =
[0,0.0101,0.0202,...,1]



MATLAB: Introduction

MATLAB Classes

The Colon (:) Operator

I Use it extensively!
I >> v1 = 1:10 % Same as v1 = [1,2,3,...,10]
I >> v2 = 0:.1:1 % Same as v2 = [0,.1,.2,...,1]
I >> m1 = rand(5) % Random 5-by-5 matrix

I >> v3 = v1(5:end) % v3 = [5,6,7,8,9,10]
I >> v4 = m1(:,3) % ‘v4’ has the elements in column 3

of ‘m1’
I >> v5 = m1(1,:) % ‘v5’ has the elements in row 1 of

‘m1’
I Do not forget linspace to generate linearly spaced

vectors!
I >> v6 = linspace(0,1,10) % =
[0,0.1111,0.2222,...,1]

I >> v7 = linspace(0,10,5) % =
[0,2.5,5,7.5,10]

I >> v8 = linspace(0,1,100) % =
[0,0.0101,0.0202,...,1]



MATLAB: Introduction

MATLAB Classes

The Colon (:) Operator

I Use it extensively!
I >> v1 = 1:10 % Same as v1 = [1,2,3,...,10]
I >> v2 = 0:.1:1 % Same as v2 = [0,.1,.2,...,1]
I >> m1 = rand(5) % Random 5-by-5 matrix
I >> v3 = v1(5:end) % v3 = [5,6,7,8,9,10]

I >> v4 = m1(:,3) % ‘v4’ has the elements in column 3
of ‘m1’

I >> v5 = m1(1,:) % ‘v5’ has the elements in row 1 of
‘m1’

I Do not forget linspace to generate linearly spaced
vectors!

I >> v6 = linspace(0,1,10) % =
[0,0.1111,0.2222,...,1]

I >> v7 = linspace(0,10,5) % =
[0,2.5,5,7.5,10]

I >> v8 = linspace(0,1,100) % =
[0,0.0101,0.0202,...,1]



MATLAB: Introduction

MATLAB Classes

The Colon (:) Operator

I Use it extensively!
I >> v1 = 1:10 % Same as v1 = [1,2,3,...,10]
I >> v2 = 0:.1:1 % Same as v2 = [0,.1,.2,...,1]
I >> m1 = rand(5) % Random 5-by-5 matrix
I >> v3 = v1(5:end) % v3 = [5,6,7,8,9,10]
I >> v4 = m1(:,3) % ‘v4’ has the elements in column 3

of ‘m1’

I >> v5 = m1(1,:) % ‘v5’ has the elements in row 1 of
‘m1’

I Do not forget linspace to generate linearly spaced
vectors!

I >> v6 = linspace(0,1,10) % =
[0,0.1111,0.2222,...,1]

I >> v7 = linspace(0,10,5) % =
[0,2.5,5,7.5,10]

I >> v8 = linspace(0,1,100) % =
[0,0.0101,0.0202,...,1]



MATLAB: Introduction

MATLAB Classes

The Colon (:) Operator

I Use it extensively!
I >> v1 = 1:10 % Same as v1 = [1,2,3,...,10]
I >> v2 = 0:.1:1 % Same as v2 = [0,.1,.2,...,1]
I >> m1 = rand(5) % Random 5-by-5 matrix
I >> v3 = v1(5:end) % v3 = [5,6,7,8,9,10]
I >> v4 = m1(:,3) % ‘v4’ has the elements in column 3

of ‘m1’
I >> v5 = m1(1,:) % ‘v5’ has the elements in row 1 of

‘m1’

I Do not forget linspace to generate linearly spaced
vectors!

I >> v6 = linspace(0,1,10) % =
[0,0.1111,0.2222,...,1]

I >> v7 = linspace(0,10,5) % =
[0,2.5,5,7.5,10]

I >> v8 = linspace(0,1,100) % =
[0,0.0101,0.0202,...,1]



MATLAB: Introduction

MATLAB Classes

The Colon (:) Operator

I Use it extensively!
I >> v1 = 1:10 % Same as v1 = [1,2,3,...,10]
I >> v2 = 0:.1:1 % Same as v2 = [0,.1,.2,...,1]
I >> m1 = rand(5) % Random 5-by-5 matrix
I >> v3 = v1(5:end) % v3 = [5,6,7,8,9,10]
I >> v4 = m1(:,3) % ‘v4’ has the elements in column 3

of ‘m1’
I >> v5 = m1(1,:) % ‘v5’ has the elements in row 1 of

‘m1’
I Do not forget linspace to generate linearly spaced

vectors!
I >> v6 = linspace(0,1,10) % =
[0,0.1111,0.2222,...,1]

I >> v7 = linspace(0,10,5) % =
[0,2.5,5,7.5,10]

I >> v8 = linspace(0,1,100) % =
[0,0.0101,0.0202,...,1]



MATLAB: Introduction

MATLAB Classes

The Colon (:) Operator

I Use it extensively!
I >> v1 = 1:10 % Same as v1 = [1,2,3,...,10]
I >> v2 = 0:.1:1 % Same as v2 = [0,.1,.2,...,1]
I >> m1 = rand(5) % Random 5-by-5 matrix
I >> v3 = v1(5:end) % v3 = [5,6,7,8,9,10]
I >> v4 = m1(:,3) % ‘v4’ has the elements in column 3

of ‘m1’
I >> v5 = m1(1,:) % ‘v5’ has the elements in row 1 of

‘m1’
I Do not forget linspace to generate linearly spaced

vectors!
I >> v6 = linspace(0,1,10) % =
[0,0.1111,0.2222,...,1]

I >> v7 = linspace(0,10,5) % =
[0,2.5,5,7.5,10]

I >> v8 = linspace(0,1,100) % =
[0,0.0101,0.0202,...,1]



MATLAB: Introduction

MATLAB Classes

The Colon (:) Operator

I Use it extensively!
I >> v1 = 1:10 % Same as v1 = [1,2,3,...,10]
I >> v2 = 0:.1:1 % Same as v2 = [0,.1,.2,...,1]
I >> m1 = rand(5) % Random 5-by-5 matrix
I >> v3 = v1(5:end) % v3 = [5,6,7,8,9,10]
I >> v4 = m1(:,3) % ‘v4’ has the elements in column 3

of ‘m1’
I >> v5 = m1(1,:) % ‘v5’ has the elements in row 1 of

‘m1’
I Do not forget linspace to generate linearly spaced

vectors!
I >> v6 = linspace(0,1,10) % =
[0,0.1111,0.2222,...,1]

I >> v7 = linspace(0,10,5) % =
[0,2.5,5,7.5,10]

I >> v8 = linspace(0,1,100) % =
[0,0.0101,0.0202,...,1]



MATLAB: Introduction

MATLAB Classes

Strings: char Arrays

I Remember that strings are also matrices in MATLAB!
I >> str1 = ’Hello, world!’ % A simple string

I >> sz1 = size(str1) % = 1-by-13
I >> a = rand; str2 = [’a = ’ num2str(a)] %

Horizontal stacking concatenates strings
I >> b = str2num(’500’)*rand % MATLAB has many

handy *2* functions!
I Format your strings with sprintf

I >> sprintf(’Volume of reactor = %.2f’,
10.23451) % Floating-point format with two decimal digits

I >> str3 = sprintf(’A large number = %e’,
rand*10ˆ5) % Exponential notation format

I >> sprintf(’Another large number = %g’,
rand*10ˆ5) % More compact format between %e and %f



MATLAB: Introduction

MATLAB Classes

Strings: char Arrays

I Remember that strings are also matrices in MATLAB!
I >> str1 = ’Hello, world!’ % A simple string
I >> sz1 = size(str1) % = 1-by-13

I >> a = rand; str2 = [’a = ’ num2str(a)] %
Horizontal stacking concatenates strings

I >> b = str2num(’500’)*rand % MATLAB has many
handy *2* functions!

I Format your strings with sprintf
I >> sprintf(’Volume of reactor = %.2f’,
10.23451) % Floating-point format with two decimal digits

I >> str3 = sprintf(’A large number = %e’,
rand*10ˆ5) % Exponential notation format

I >> sprintf(’Another large number = %g’,
rand*10ˆ5) % More compact format between %e and %f



MATLAB: Introduction

MATLAB Classes

Strings: char Arrays

I Remember that strings are also matrices in MATLAB!
I >> str1 = ’Hello, world!’ % A simple string
I >> sz1 = size(str1) % = 1-by-13
I >> a = rand; str2 = [’a = ’ num2str(a)] %

Horizontal stacking concatenates strings

I >> b = str2num(’500’)*rand % MATLAB has many
handy *2* functions!

I Format your strings with sprintf
I >> sprintf(’Volume of reactor = %.2f’,
10.23451) % Floating-point format with two decimal digits

I >> str3 = sprintf(’A large number = %e’,
rand*10ˆ5) % Exponential notation format

I >> sprintf(’Another large number = %g’,
rand*10ˆ5) % More compact format between %e and %f



MATLAB: Introduction

MATLAB Classes

Strings: char Arrays

I Remember that strings are also matrices in MATLAB!
I >> str1 = ’Hello, world!’ % A simple string
I >> sz1 = size(str1) % = 1-by-13
I >> a = rand; str2 = [’a = ’ num2str(a)] %

Horizontal stacking concatenates strings
I >> b = str2num(’500’)*rand % MATLAB has many

handy *2* functions!

I Format your strings with sprintf
I >> sprintf(’Volume of reactor = %.2f’,
10.23451) % Floating-point format with two decimal digits

I >> str3 = sprintf(’A large number = %e’,
rand*10ˆ5) % Exponential notation format

I >> sprintf(’Another large number = %g’,
rand*10ˆ5) % More compact format between %e and %f



MATLAB: Introduction

MATLAB Classes

Strings: char Arrays

I Remember that strings are also matrices in MATLAB!
I >> str1 = ’Hello, world!’ % A simple string
I >> sz1 = size(str1) % = 1-by-13
I >> a = rand; str2 = [’a = ’ num2str(a)] %

Horizontal stacking concatenates strings
I >> b = str2num(’500’)*rand % MATLAB has many

handy *2* functions!
I Format your strings with sprintf

I >> sprintf(’Volume of reactor = %.2f’,
10.23451) % Floating-point format with two decimal digits

I >> str3 = sprintf(’A large number = %e’,
rand*10ˆ5) % Exponential notation format

I >> sprintf(’Another large number = %g’,
rand*10ˆ5) % More compact format between %e and %f



MATLAB: Introduction

MATLAB Classes

Strings: char Arrays

I Remember that strings are also matrices in MATLAB!
I >> str1 = ’Hello, world!’ % A simple string
I >> sz1 = size(str1) % = 1-by-13
I >> a = rand; str2 = [’a = ’ num2str(a)] %

Horizontal stacking concatenates strings
I >> b = str2num(’500’)*rand % MATLAB has many

handy *2* functions!
I Format your strings with sprintf

I >> sprintf(’Volume of reactor = %.2f’,
10.23451) % Floating-point format with two decimal digits

I >> str3 = sprintf(’A large number = %e’,
rand*10ˆ5) % Exponential notation format

I >> sprintf(’Another large number = %g’,
rand*10ˆ5) % More compact format between %e and %f



MATLAB: Introduction

MATLAB Classes

Strings: char Arrays

I Remember that strings are also matrices in MATLAB!
I >> str1 = ’Hello, world!’ % A simple string
I >> sz1 = size(str1) % = 1-by-13
I >> a = rand; str2 = [’a = ’ num2str(a)] %

Horizontal stacking concatenates strings
I >> b = str2num(’500’)*rand % MATLAB has many

handy *2* functions!
I Format your strings with sprintf

I >> sprintf(’Volume of reactor = %.2f’,
10.23451) % Floating-point format with two decimal digits

I >> str3 = sprintf(’A large number = %e’,
rand*10ˆ5) % Exponential notation format

I >> sprintf(’Another large number = %g’,
rand*10ˆ5) % More compact format between %e and %f



MATLAB: Introduction

MATLAB Classes

function_handle (@) Class

I Used in calling functions indirectly

I >> Sin = @sin; % The variable ‘Sin’ points to the
function ‘sin’

I >> Sin(pi) % Evaluates the sine of π

I Can be used to create ‘anonymous functions’

I >> myfun = @(x) 1./(x.ˆ3 + 3*x - 5) %
Anonymous function

I >> quad(myfun,0,1) % Adaptive Simpson quadrature
to integrate ‘myfun’



MATLAB: Introduction

MATLAB Classes

function_handle (@) Class

I Used in calling functions indirectly

I >> Sin = @sin; % The variable ‘Sin’ points to the
function ‘sin’

I >> Sin(pi) % Evaluates the sine of π

I Can be used to create ‘anonymous functions’

I >> myfun = @(x) 1./(x.ˆ3 + 3*x - 5) %
Anonymous function

I >> quad(myfun,0,1) % Adaptive Simpson quadrature
to integrate ‘myfun’



MATLAB: Introduction

MATLAB Classes

function_handle (@) Class

I Used in calling functions indirectly

I >> Sin = @sin; % The variable ‘Sin’ points to the
function ‘sin’

I >> Sin(pi) % Evaluates the sine of π

I Can be used to create ‘anonymous functions’

I >> myfun = @(x) 1./(x.ˆ3 + 3*x - 5) %
Anonymous function

I >> quad(myfun,0,1) % Adaptive Simpson quadrature
to integrate ‘myfun’



MATLAB: Introduction

MATLAB Classes

function_handle (@) Class

I Used in calling functions indirectly

I >> Sin = @sin; % The variable ‘Sin’ points to the
function ‘sin’

I >> Sin(pi) % Evaluates the sine of π

I Can be used to create ‘anonymous functions’

I >> myfun = @(x) 1./(x.ˆ3 + 3*x - 5) %
Anonymous function

I >> quad(myfun,0,1) % Adaptive Simpson quadrature
to integrate ‘myfun’



MATLAB: Introduction

MATLAB Classes

function_handle (@) Class

I Used in calling functions indirectly

I >> Sin = @sin; % The variable ‘Sin’ points to the
function ‘sin’

I >> Sin(pi) % Evaluates the sine of π

I Can be used to create ‘anonymous functions’

I >> myfun = @(x) 1./(x.ˆ3 + 3*x - 5) %
Anonymous function

I >> quad(myfun,0,1) % Adaptive Simpson quadrature
to integrate ‘myfun’



MATLAB: Introduction

Scripts and Functions

Outline

What is MATLAB?

MATLAB Windows

MATLAB as a Calculator

MATLAB Classes

Scripts and Functions
Writing MATLAB Programs
Code Cells and Publishing



MATLAB: Introduction

Scripts and Functions

Writing MATLAB Programs

M-Files

I The file with source code is called M-File (*.m)
I Scripts: No input and no output arguments. Contain a

series of commands that may call other scripts and
functions.

I Functions: Accept input and output arguments. Usually
called program routines and have a special definition
syntax.

I Inside scripts and functions you may use programming
statements, such as flow, loop, and error control

I Open the Editor Window and start coding!



MATLAB: Introduction

Scripts and Functions

Writing MATLAB Programs

Function M-Files

I General form:

function [out1, out2, ...] = funname(in1, in2, ...)
statement
...

end % Optional
I Example:

function Z = virialgen(P,Pc,T,Tc,omega)
Pr = P/Pc;
Tr = T/Tc;
[B0,B1] = virialB(Tr);
Z = 1 + Pr/Tr*(B0 + omega*B1);

function [B0,B1] = virialB(Tr)
B0 = 0.083 - 0.422/Tr^1.6;
B1 = 0.139 - 0.172/Tr^4.2;



MATLAB: Introduction

Scripts and Functions

Code Cells and Publishing

Code Cells

I Allow you to divide your M-files into sections (cells)
I Enable you to execute cell by cell
I Foundations for publishing your M-file to HTML, PDF, and

other formats
I To begin a code cell, type %% at the beginning of a line
I The first line after the %% is the title of the code cell
I The next lines starting with % are a description of the code

cell
I Place your code in the next lines
I A new code cell starts at the next %% at the beginning of a

line



MATLAB: Introduction

Scripts and Functions

Code Cells and Publishing

Code Cells: Example

I Simple example:

%% 99-999: Homework 1
% Bruno Abreu Calfa

%% Problem 1
x = linspace(0,1);
y = sin(x.^2).*exp(-x.*tan(x));
plot(x,y);

%% Problem 2
a = 0;
b = 1;
f = @(t) exp(-t.^2);
intf = quad(f,a,b);
sprintf(’Integral of f from %g to %g = %g’,a,b,intf)



MATLAB: Introduction

Scripts and Functions

Code Cells and Publishing

Publishing your Code

I Saves output of your code to a specific file type
I Formats available:

File Format Description
doc Microsoft Word1

latex LATEX1

ppt Microsoft Powerpoint1

xml Extensible Markup Language
pdf Portable Document Format
html Hypertext Markup Language

I MATLAB evaluates your M-file and generates the output
I To publish your M-file, go to: File -> Publish

1Syntax highlighting not preserved


