MATLAB: Introduction

Part 1

Bruno Abreu Calfa

Last Update: August 9, 2011

Table of Contents

Outline

Contents

1 What is MATLAB? 1
2 MATLAB Windows 2
3 MATLAB as a Calculator 3
4 MATLAB Classes $\mathbf{3}$
5 Scripts and Functions 6
5.1 Writing MATLAB Programs . 6
5.2 Code Cells and Publishing . 6

1 What is MATLAB?

A powerful tool!

- MATLAB stands for Matrix Laboratory
- Enhanced by toolboxes (specific routines for an area of application)
- Optimization
- Statistics
- Control System
- Bioinformatics
- ...
- Excellent for numerical computations
- Commonly regarded as a 'Rapid Prototyping Tool'
- Used in industry and academia

Help with MATLAB?

- MATLAB's Help
- Google
- A book about MATLAB

2 MATLAB Windows

Main Window

- Command Window (prompt \gg)
- Current Directory
- Workspace (contains variables stored in memory)
- Help Menu

Editor Window

- Window Menu (Tile)
- Debug Menu (Run, Step, Step In, Step Out...)
- Cell Menu (Cell Mode)

3 MATLAB as a Calculator

Basic Operators

- MATLAB supports the following mathematical operators

Operator	Operation
+	Addition
-	Subtraction
$*$	Multiplication
$/$	Division
\sim	Exponentiation

- Some examples:
- >>1 + 2
$-\gg 2 \star 3+4$
$-\gg 4 / 3-3 / 4+2^{\wedge} 3$

Basic Operators

- Beware of operator precedence rules!
- $\gg 2 * 3+4$
- $\gg 2 *(3+4)$
$-\gg 4.2 / 3+1.2$
$-\gg 4.2 /(3+1.2)$
$-\gg 15 /(2+3) *(4-1)$
$-\gg 15 /((2+3) *(4-1))$
- >> 2^3/2
$-\gg 2^{\wedge}(3 / 2)$
- Use parentheses to enforce the desired order

4 MATLAB Classes

All Matrices!

- "Everything" in MATLAB is a matrix
- A scalar is a 1-by-1 matrix
- A 1D array of n elements can be a $\mathrm{n}-\mathrm{by}-1$ (row vector) or a $1-\mathrm{by}-\mathrm{n}$ (column vector) matrix
- A string of n characters is a $1-\mathrm{by}-\mathrm{n}$ matrix
- ...
- Some MATLAB classes:
- double (Double-precision floating-point number array) (default)
- single (Single-precision floating-point number array)
- char (Character array)
- cell (Cell array)
- struct (Structure array)
- function_handle (Array of values for calling functions indirectly)

Scalar Variables: 1-by-1 Matrices!

- Use the ' $=$ ' sign for assignment
$-\gg a=1 \%$ The scalar variable 'a' stores the value 1
$-\gg \%$ This is a comment and is ignored by the interpreter
- >> sin (a) \% Sine of 'a' $=0.8415$
$-\gg \sin (\mathrm{a}) ; \%$ ';' avoids displaying the result of the command
$-\gg \operatorname{size}(\mathrm{a}) \%=[1,1]$, i.e. 1 -by-1 matrix
$-\gg \mathrm{b}=\mathrm{a}+2 \% \mathrm{~b}=3$
$-\gg c=\cos (\mathrm{b} * \mathrm{pi} / .2) \%$ 'pi' is the builtin constant π
$-\gg d=$ rand $\%$ A random scalar
- Use the commands who or whos to list the variables defined in the Workspace
- Other common functions are available: exp, tan, sinh, acos,...

1D Arrays: Real Vectors (or Matrices!)

- Use [.] or [.] for horizontal stacking and [. . . ; . . .] for vertical stacking
$-\gg \mathrm{v} 1=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right] \%$ Row vector, same as $\mathrm{v} 1=[1,2,3]$
$-\gg v 2=[4 ; 5 ; 6] \%$ Column vector
- >>v3 = v2 - v1 \% Error! Imcompatible matrix dimensions
$-\gg \mathrm{v} 3=\mathrm{v} 2-\mathrm{v} 1 .^{\prime} \%$ Transpose a real matrix with .'
$-\gg \mathrm{v} 4=\mathrm{v} 1 * \mathrm{v} 2 \%$ Dot product, also dot (v1, v2)
$-\gg \mathrm{v} 7=.1 * v 4 \%$ Scalar-vector multiplication
- >>v7(1) \% First element of array 'v7'
$-\gg v 8=\exp (v 7) \%$ Element-wise operation
$-\gg$ sz8 $=\operatorname{size}(v 8) \%=\left[\begin{array}{ll}1 & 3\end{array}\right]$
$-\gg v 9=\operatorname{rand}(1,5) \%$ Random $1-b y-5$ array
$-\gg p=\operatorname{prod}(\mathrm{v} 1) \%$ Product of elements $=6$

2D Arrays: Real Matrices

- Use horizontal stacking and vertical stacking likewise
$-\gg m 1=\left[\begin{array}{llllll}1 & 2 & 3 ; & 4 & 5 & 6\end{array}\right] \% 2-b y-3$
$-\gg m 1 p=[1,2,3 ; 4,5,6] \% 2-$ by -3 , same as $m 1$
$-\gg m 2=\operatorname{rand}(2,3) \%$ Random 2-by-3 matrix
$-\gg m 3=m 1+m 2 \%$ Matrix addition
$-\gg m 4=m 1 * m 2 \%$ Error! Dimensions don't agree
$-\gg m 4=m 1 * m 2 .^{\prime} \%$ OK! Transpose a real matrix with.$^{\prime}$
- >>m4 $(1,2) \%$ Element in row 1 and column 2 of 'm4'
$-\gg$ len $4=$ length (m4) \% Size of longest dimension
- >> m5 = m3/2 \% Element-wise division
$-\gg m 6=\tan (m 5) \%$ Element-wise operation

Element-wise Operations

- The following are element-wise mathematical operators

Operator	Operation
.\star	Element-wise Multiplication
.$/$	Element-wise Division
.\wedge	Element-wise Exponentiation

- More examples:
$-\gg v 1=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right] \% 1-b y-3$
$-\gg v 2=\left[\begin{array}{lll}2 & 4 & 6\end{array}\right] \% 1-\mathrm{by}-3$
$-\gg \mathrm{v} 3=\mathrm{v} 1 . \star \mathrm{v} 2 \%=\left[\begin{array}{lll}2 & 8 & 18\end{array}\right]$
$-\gg \mathrm{v} 4=\mathrm{v} 2 . / \mathrm{v} 1 \%=\left[\begin{array}{lll}2 & 2 & 2\end{array}\right]$
$-\gg \mathrm{v} 5=\mathrm{v} 1 .{ }^{\wedge} \mathrm{v} 4 \%=\left[\begin{array}{lll}1 & 4 & 9\end{array}\right]$
$-\gg \mathrm{ml}=\left[\begin{array}{llll}0 & 1 ; & 1 & 0\end{array}\right] \% 2-$ by -2
$-\gg m 2=\left[\begin{array}{llll}3 & 5 & 7 & 2\end{array}\right] \% 2-$ by -2
$-\gg m 3=m 1 . * m 2 \%=\left[\begin{array}{lll}0 & 5 ; & 7\end{array}\right]$

The Colon (:) Operator

- Use it extensively!
$-\gg \mathrm{v} 1=1: 10 \%$ Same as v1 $=[1,2,3, \ldots, 10]$
$-\gg v 2=0: .1: 1 \%$ Same as $v 2=[0, .1, .2, \ldots, 1]$
$-\gg \mathrm{ml}=$ rand (5) \% Random 5-by-5 matrix
$-\gg \mathrm{v} 3=\mathrm{v} 1(5:$ end) $\% \mathrm{v} 3=[5,6,7,8,9,10]$
$-\gg \mathrm{v} 4=\mathrm{ml}(:, 3) \%$ ' v 4 ' has the elements in column 3 of ' ml '
$-\gg \mathrm{v} 5=\mathrm{m} 1(1,:) \%$ ' v 5 ' has the elements in row 1 of ' m 1 '
- Do not forget linspace to generate linearly spaced vectors!
- >>v6 $=\operatorname{linspace}(0,1,10) \%=[0,0.1111,0.2222, \ldots, 1]$
$-\gg v 7=\operatorname{linspace}(0,10,5) \%=[0,2.5,5,7.5,10]$
$-\gg v 8=\operatorname{linspace}(0,1,100) \%=[0,0.0101,0.0202, \ldots, 1]$

Strings: char Arrays

- Remember that strings are also matrices in MATLAB!
- >>str1 = 'Hello, world!' \% A simple string
$-\gg s z 1=\operatorname{size}(s t r 1) \%=1-b y-13$
$-\gg a=$ rand; str2 $=\left[{ }^{\prime} \mathrm{a}=\right.$ ' num2str $\left.(\mathrm{a})\right] \%$ Horizontal stacking concatenates strings
$-\gg b=$ str2num ('500') *rand \% MATLAB has many handy $* 2 *$ functions!
- Format your strings with sprintf
- >>sprintf('Volume of reactor $=\% .2 \mathrm{f}^{\prime}, 10.23451$) \% Floating-point format with two decimal digits
$-\gg$ str3 $=\operatorname{sprintf('A~large~number~}=\% e^{\prime}$, rand*10^5) \% Exponential notation format
- >> sprintf('Another large number $=\% g^{\prime}$, rand*10^5) \% More compact format between $\% e$ and $\% f$

function_handle (@) Class

- Used in calling functions indirectly
- \gg Sin $=@ \sin ; \%$ The variable 'Sin' points to the function 'sin'
- $\gg \operatorname{Sin}(\mathrm{pi}) \%$ Evaluates the sine of π
- Can be used to create 'anonymous functions'
$-\gg$ myfun $=@(x) 1 . /\left(x .^{\wedge} 3+3 \star x-5\right) \%$ Anonymous function
- \gg quad (myfun, 0,1) \% Adaptive Simpson quadrature to integrate 'myfun'

5 Scripts and Functions

5.1 Writing MATLAB Programs

M-Files

- The file with source code is called M-File (*.m)
- Scripts: No input and no output arguments. Contain a series of commands that may call other scripts and functions.
- Functions: Accept input and output arguments. Usually called program routines and have a special definition syntax.
- Inside scripts and functions you may use programming statements, such as flow, loop, and error control
- Open the Editor Window and start coding!

Function M-Files

- General form:

```
    function [out1, out2, ...] = funname(in1, in2, ...)
        statement
end % Optional
```

- Example:

```
function Z = virialgen(P,PC,T,TC,omega)
Pr = P/Pc;
Tr = T/TC;
[B0,B1] = virialB(Tr);
Z = 1 + Pr/Tr*(B0 + omega*B1);
function [B0,B1] = virialB(Tr)
B0 = 0.083-0.422/Tr^1.6;
B1 = 0.139 - 0.172/Tr^4.2;
```


5.2 Code Cells and Publishing

Code Cells

- Allow you to divide your M-files into sections (cells)
- Enable you to execute cell by cell
- Foundations for publishing your M-file to HTML, PDF, and other formats
- To begin a code cell, type $\% \%$ at the beginning of a line
- The first line after the $\% \%$ is the title of the code cell
- The next lines starting with $\%$ are a description of the code cell
- Place your code in the next lines
- A new code cell starts at the next $\% \%$ at the beginning of a line

Code Cells: Example

- Simple example:

```
%% 99-999: Homework 1
% Bruno Abreu Calfa
%% Problem 1
x = linspace(0,1);
y = sin(x.^2).*exp (-x.*tan(x));
plot(x,y);
%% Problem 2
a = 0;
b = 1;
f = @(t) exp(-t.^2);
intf = quad(f,a,b);
sprintf('Integral of f from %g to %g = %g',a,b,intf)
```


Publishing your Code

- Saves output of your code to a specific file type
- Formats available:

File Format	Description
doc	Microsoft Word 1
latex	LATEX 1
ppt	Microsoft Powerpoint ${ }^{1}$
xml	Extensible Markup Language
pdf	Portable Document Format
html	Hypertext Markup Language

- MATLAB evaluates your M-file and generates the output
- To publish your M-file, go to: File -> Publish

