
MATLAB: Introduction
Part 1

Bruno Abreu Calfa

Last Update: August 9, 2011

Table of Contents
Outline

Contents
1 What is MATLAB? 1

2 MATLAB Windows 2

3 MATLAB as a Calculator 3

4 MATLAB Classes 3

5 Scripts and Functions 6
5.1 Writing MATLAB Programs . 6
5.2 Code Cells and Publishing . 6

1 What is MATLAB?
A powerful tool!

• MATLAB stands for Matrix Laboratory

• Enhanced by toolboxes (specific routines for an area of application)

– Optimization

– Statistics

– Control System

– Bioinformatics

– . . .

• Excellent for numerical computations

• Commonly regarded as a ‘Rapid Prototyping Tool’

• Used in industry and academia

1

Help with MATLAB?

• MATLAB’s Help

• Google

• A book about MATLAB

2 MATLAB Windows
Main Window

• Command Window (prompt >>)

• Current Directory

• Workspace (contains variables stored in memory)

• Help Menu

Editor Window

• Window Menu (Tile)

• Debug Menu (Run, Step, Step In, Step Out...)

• Cell Menu (Cell Mode)

2

3 MATLAB as a Calculator
Basic Operators

• MATLAB supports the following mathematical operators

Operator Operation
+ Addition
- Subtraction
* Multiplication
/ Division
ˆ Exponentiation

• Some examples:

– >> 1 + 2

– >> 2*3 + 4

– >> 4/3 - 3/4 + 2ˆ3

Basic Operators

• Beware of operator precedence rules!

– >> 2*3 + 4

– >> 2*(3 + 4)

– >> 4.2/3 + 1.2

– >> 4.2/(3 + 1.2)

– >> 15/(2 + 3)*(4 - 1)

– >> 15/((2 + 3)*(4 - 1))

– >> 2ˆ3/2

– >> 2ˆ(3/2)

• Use parentheses to enforce the desired order

4 MATLAB Classes
All Matrices!

• “Everything” in MATLAB is a matrix

– A scalar is a 1-by-1 matrix
– A 1D array of n elements can be a n-by-1 (row vector) or a 1-by-n (column vector) matrix
– A string of n characters is a 1-by-n matrix
– . . .

• Some MATLAB classes:

– double (Double-precision floating-point number array) (default)
– single (Single-precision floating-point number array)
– char (Character array)
– cell (Cell array)
– struct (Structure array)
– function_handle (Array of values for calling functions indirectly)

3

Scalar Variables: 1-by-1 Matrices!

• Use the ‘=’ sign for assignment

– >> a = 1 % The scalar variable ‘a’ stores the value 1

– >> % This is a comment and is ignored by the interpreter

– >> sin(a) % Sine of ‘a’ = 0.8415

– >> sin(a); % ‘;’ avoids displaying the result of the command

– >> size(a) % = [1,1], i.e. 1-by-1 matrix

– >> b = a + 2 % b = 3

– >> c = cos(b*pi/.2) % ‘pi’ is the builtin constant ⇡

– >> d = rand % A random scalar

• Use the commands who or whos to list the variables defined in the Workspace

• Other common functions are available: exp, tan, sinh, acos, . . .

1D Arrays: Real Vectors (or Matrices!)

• Use [...,...] or [... ...] for horizontal stacking and [...;...] for vertical stacking

– >> v1 = [1 2 3] % Row vector, same as v1 = [1,2,3]

– >> v2 = [4;5;6] % Column vector

– >> v3 = v2 - v1 % Error! Imcompatible matrix dimensions

– >> v3 = v2 - v1.’ % Transpose a real matrix with .’

– >> v4 = v1*v2 % Dot product, also dot(v1,v2)

– >> v7 = .1*v4 % Scalar-vector multiplication

– >> v7(1) % First element of array ‘v7’

– >> v8 = exp(v7) % Element-wise operation

– >> sz8 = size(v8) % = [1 3]

– >> v9 = rand(1,5) % Random 1-by-5 array

– >> p = prod(v1) % Product of elements = 6

2D Arrays: Real Matrices

• Use horizontal stacking and vertical stacking likewise

– >> m1 = [1 2 3; 4 5 6] % 2-by-3

– >> m1p = [1,2,3; 4,5,6] % 2-by-3, same as m1

– >> m2 = rand(2,3) % Random 2-by-3 matrix

– >> m3 = m1 + m2 % Matrix addition

– >> m4 = m1*m2 % Error! Dimensions don’t agree

– >> m4 = m1*m2.’ % OK! Transpose a real matrix with .’

– >> m4(1,2) % Element in row 1 and column 2 of ‘m4’

– >> len4 = length(m4) % Size of longest dimension

– >> m5 = m3/2 % Element-wise division

– >> m6 = tan(m5) % Element-wise operation

4

Element-wise Operations

• The following are element-wise mathematical operators

Operator Operation
.* Element-wise Multiplication
./ Element-wise Division
.ˆ Element-wise Exponentiation

• More examples:

– >> v1 = [1 2 3] % 1-by-3

– >> v2 = [2 4 6] % 1-by-3

– >> v3 = v1.*v2 % = [2 8 18]

– >> v4 = v2./v1 % = [2 2 2]

– >> v5 = v1.ˆv4 % = [1 4 9]

– >> m1 = [0 1; 1 0] % 2-by-2

– >> m2 = [3 5; 7 2] % 2-by-2

– >> m3 = m1.*m2 % = [0 5; 7 0]

The Colon (:) Operator

• Use it extensively!

– >> v1 = 1:10 % Same as v1 = [1,2,3,...,10]

– >> v2 = 0:.1:1 % Same as v2 = [0,.1,.2,...,1]

– >> m1 = rand(5) % Random 5-by-5 matrix
– >> v3 = v1(5:end) % v3 = [5,6,7,8,9,10]

– >> v4 = m1(:,3) % ‘v4’ has the elements in column 3 of ‘m1’
– >> v5 = m1(1,:) % ‘v5’ has the elements in row 1 of ‘m1’

• Do not forget linspace to generate linearly spaced vectors!

– >> v6 = linspace(0,1,10) % = [0,0.1111,0.2222,...,1]

– >> v7 = linspace(0,10,5) % = [0,2.5,5,7.5,10]

– >> v8 = linspace(0,1,100) % = [0,0.0101,0.0202,...,1]

Strings: char Arrays

• Remember that strings are also matrices in MATLAB!

– >> str1 = ’Hello, world!’ % A simple string
– >> sz1 = size(str1) % = 1-by-13

– >> a = rand; str2 = [’a = ’ num2str(a)] % Horizontal stacking concatenates strings
– >> b = str2num(’500’)*rand % MATLAB has many handy *2* functions!

• Format your strings with sprintf

– >> sprintf(’Volume of reactor = %.2f’, 10.23451)% Floating-point format with two
decimal digits

– >> str3 = sprintf(’A large number = %e’, rand*10ˆ5) % Exponential notation for-
mat

– >> sprintf(’Another large number = %g’, rand*10ˆ5) % More compact format be-
tween %e and %f

5

function_handle (@) Class
• Used in calling functions indirectly

– >> Sin = @sin; % The variable ‘Sin’ points to the function ‘sin’
– >> Sin(pi) % Evaluates the sine of ⇡

• Can be used to create ‘anonymous functions’

– >> myfun = @(x) 1./(x.ˆ3 + 3*x - 5) % Anonymous function
– >> quad(myfun,0,1) % Adaptive Simpson quadrature to integrate ‘myfun’

5 Scripts and Functions
5.1 Writing MATLAB Programs
M-Files

• The file with source code is called M-File (*.m)

• Scripts: No input and no output arguments. Contain a series of commands that may call other scripts and
functions.

• Functions: Accept input and output arguments. Usually called program routines and have a special definition
syntax.

• Inside scripts and functions you may use programming statements, such as flow, loop, and error control

• Open the Editor Window and start coding!

Function M-Files
• General form:

function [out1, out2, ...] = funname(in1, in2, ...)
statement
...

end % Optional

• Example:

function Z = virialgen(P,Pc,T,Tc,omega)
Pr = P/Pc;
Tr = T/Tc;
[B0,B1] = virialB(Tr);
Z = 1 + Pr/Tr*(B0 + omega*B1);

function [B0,B1] = virialB(Tr)
B0 = 0.083 - 0.422/Tr^1.6;
B1 = 0.139 - 0.172/Tr^4.2;

5.2 Code Cells and Publishing
Code Cells

• Allow you to divide your M-files into sections (cells)

• Enable you to execute cell by cell

• Foundations for publishing your M-file to HTML, PDF, and other formats

• To begin a code cell, type %% at the beginning of a line

• The first line after the %% is the title of the code cell

• The next lines starting with % are a description of the code cell

• Place your code in the next lines

• A new code cell starts at the next %% at the beginning of a line

6

Code Cells: Example

• Simple example:

%% 99-999: Homework 1
% Bruno Abreu Calfa

%% Problem 1
x = linspace(0,1);
y = sin(x.^2).*exp(-x.*tan(x));
plot(x,y);

%% Problem 2
a = 0;
b = 1;
f = @(t) exp(-t.^2);
intf = quad(f,a,b);
sprintf(’Integral of f from %g to %g = %g’,a,b,intf)

Publishing your Code

• Saves output of your code to a specific file type

• Formats available:

File Format Description
doc Microsoft Word1

latex LATEX1

ppt Microsoft Powerpoint1
xml Extensible Markup Language
pdf Portable Document Format
html Hypertext Markup Language

• MATLAB evaluates your M-file and generates the output

• To publish your M-file, go to: File -> Publish

7

	What is MATLAB?
	MATLAB Windows
	MATLAB as a Calculator
	MATLAB Classes
	Scripts and Functions
	Writing MATLAB Programs
	Code Cells and Publishing

